Decay Estimates and Smoothness for Solutions of the Dispersion Managed Non-linear Schrödinger Equation
نویسنده
چکیده
We study the decay and smoothness of solutions of the dispersion managed non-linear Schrödinger equation in the case of zero residual dispersion. Using new x-space versions of bilinear Strichartz estimates, we show that the solutions are not only smooth, but also fast decaying.
منابع مشابه
Regularity of Ground State Solutions of Dispersion Managed Nonlinear Schrödinger Equations
Abstract. We consider the Dispersion Managed Nonlinear Schrödinger Equation in the case of zero residual dispersion. Using dispersive properties of the equation and estimates in Bourgain spaces we show that the ground state solutions of DMNLS are smooth. The existence of smooth solutions in this case matches the well-known smoothness of the solutions in the case of nonzero residual dispersion. ...
متن کاملDecay estimates of solutions to the IBq equation
In this paper we focus on the Cauchy problem for the generalized IBq equation with damped term in $n$-dimensional space. We establish the global existence and decay estimates of solution with $L^q(1leq qleq 2)$ initial value, provided that the initial value is suitably small. Moreover, we also show that the solution is asymptotic to the solution $u_L$ to the corresponding linear equa...
متن کاملAnalytical Solutions for Spatially Variable Transport-Dispersion of Non-Conservative Pollutants
Analytical solutions have been obtained for both conservative and non-conservative forms of one-dimensional transport and transport-dispersion equations applicable for pollution as a result of a non-conservative pollutant-disposal in an open channel with linear spatially varying transport velocity and nonlinear spatially varying dispersion coefficient on account of a steady unpolluted lateral i...
متن کاملAsymptotic decay estimates for the repulsive Schrödinger-Poisson system
In this paper the time decay rates for the solutions to the Schr odinger–Poisson system in the repulsive case are improved in the context of semiconductor theory. Upper and lower estimates are obtained by using a norm involving the potential energy and the dispersion equation. In the attractive case some examples, based on the Galilean invariance, are proposed showing that the solutions does no...
متن کاملSuper-exponential Decay of Diffraction Managed Solitons
This is the second part of a series of papers where we develop rigorous decay estimates for breather solutions of an averaged version of the non-linear Schrödinger equation. In this part we study the diffraction managed discrete nonlinear Schrödinger equation, an equation which describes coupled waveguide arrays with periodic diffraction management geometries. We show that, for vanishing averag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008